

74F543

Octal registered transceiver, non-inverting (3-State)

Product data sheet

FEATURES

- Combines74F245 and 74F373 type functions in one chip
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 20 mA and source 3 mA
- B outputs sink 64 mA and source 15 mA
- 3-State outputs for bus-oriented applications
- Available in SSOP Type II package

DESCRIPTION

The 74F543 Octal Registered Transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}})$ and Output Enable ($\overline{O E A B}, \overline{O E B A})$ inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA , while the B outputs are rated for 64 mA .

FUNCTIONAL DESCRIPTION

The 74F543 contains two sets of eight D-type latches, with separate input and controls for each set. For data flow from A to B, for example, the A-to-B Enable (EAB) input must be LOW in order to enter data from $\mathrm{A} 0-\mathrm{A} 7$ or take data from $\mathrm{B} 0-\mathrm{B} 7$, as indicated in the Function Table. With EAB LOW, a LOW signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition for the [EAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With EAB and OEAB both LOW, the 3-State B output buffers are active and display the data present at the outputs of the A latches. Control of data flow from B to A is similar, but using the EBA, LEBA , and $\overline{O E B A}$ inputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 543$	6.0 ns	80 mA

ORDERING INFORMATION

Commerical range: $V_{C C}=5 \mathrm{~V} \pm 10 \%$; $T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Type number	Package	Version	
	Name	Description	SOTastic small outline package; 24 leads; body width 7.5 mm
N74F543D	SO24	plastic shrink small outline pacakge; 24 leads; body width 5.3 mm	SOT340-1
N74F543DB	SSOP24	plastic dual in-line package; 24 leads (300 mil)	SOT222-1
N74F543N	DIP24		

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L. HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7	Port A, 3-State inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
B0 - B7	Port B, 3-State inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OEAB	A-to-B Output Enable input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OEBA	B-to-A Output Enable input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
EAB	A-to-B Enable input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
EBA	B-to-A Enable input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
LEAB	A-to-B Latch Enable input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
LEBA	B-to-A Latch Enable input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
A0 - A7	Port A, 3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
B0 - B7	Port B, 3-State outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the HIGH State and 0.6 mA in the LOW state.

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

FUNCTION TABLE for 74F543

INPUTS				STATUS	
OEXX	EXX	LEXX	DATA		
H	X	X	X	Z	Disabled
X	H	X	X	Z	Disabled
L	\uparrow	L	h	Z	Disable +
L	\uparrow	L	I	Z	Latch
L	L	\uparrow	h	H	Latch +
L	L	\uparrow	I	L	Display
L	L	L	H	H	Transparent
L	L	L	L	L	
L	L	H	X	NC	Hold

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$\mathrm{L}=$ LOW voltage level
$\mathrm{h}=\mathrm{HIGH}$ state must be present one setup time before the LOW-to-HIGH transition of LEXX or EXX ($X X=A B$ or BA)
I = LOW state must be present one setup time before the LOW-to-HIGH transition of LEXX or EXX ($X X=A B$ or BA)
$\uparrow=$ LOW-to-HIGH transition of LEXX or EXX XX =AB or BA
$X=$ Don't care
$N C=$ No change
Z = High-impedance "off" state

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in LOW output state	$\mathrm{AO}-\mathrm{A} 7$	48
		$\mathrm{BO}-\mathrm{B} 7$	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	128	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		-	-	0.8	V
I_{IK}	Input clamp current		-	-	-18	mA
IOH	HIGH-level output current	A0-A7	-	-	-3	mA
		B0-B7	-	-	-15	mA
${ }_{\text {loL }}$	LOW-level output current	A0-A7	-	-	24	mA
		B0-B7	-	-	64	mA
Tamb	Operating free-air temperature range		-0	-	+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP ${ }^{2}$	MAX							
V_{OH}	HIGH-level output voltage	A0-A7				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4	-	-	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4			-	V			
		B0-B7	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0		-	-	V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0		-	-	V			
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	A0-A7	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	-	0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	-	0.35	0.50	V			
		B0-B7		$\mathrm{loL}=64 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	-	-	0.55	V			
					$\pm 5 \% \mathrm{~V}_{\text {CC }}$	-	0.42	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-	-0.73	-1.2	V			
1	Input current at maximum input voltage	OEAB, OEBA, EAB	$\mathrm{V}_{\text {CC }}=\mathrm{MAX} ; \mathrm{V}_{1}=7.0 \mathrm{~V}$			-	-	100	$\mu \mathrm{A}$			
		Others	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			-	-	1	mA			
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ;$, $=2.7 \mathrm{~V}$		-	-	20	$\mu \mathrm{A}$			
$1 / L$	LOW-level input current	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \mathrm{V}_{1}=0.5 \mathrm{~V}$			-	-	-0.6	mA			
		EAB, EBA				-	-	-1.2	mA			
$\mathrm{I}_{\text {OZH }}+\mathrm{I}_{\mathrm{IH}}$	Off-state output current, HIGH-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			-	-	70	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {OZH }}+\mathrm{I}_{\text {IL }}$	Off-state output current, LOW-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$;	$\mathrm{O}=0.5 \mathrm{~V}$		-	-	-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	A0-A7	$V_{C C}=$ MAX			-60	-	-150	mA			
		B0-B7				-100	-	-225	mA			
$I_{\text {cc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-	70	105	mA			
		$\mathrm{I}_{\text {CCL }}$				-	95	135	mA			
		ICCZ				-	95	135	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under the recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation delay $\mathrm{B}_{\mathrm{n}} \text { to } \mathrm{A}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation delay LEBA to A_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay LEAB to B_{n}	Waveform 1	$\begin{aligned} & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12.5 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\text {pzL }} \end{aligned}$	Output Enable time $\overline{O E B A}$ to A_{n} or $\overline{O E A B}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable time OEBA to A_{n} or $\overline{O E A B}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output Enable time EBA to A_{n} or EAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable time EBA to A_{n} or EAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.5 \\ 12.0 \\ \hline \end{array}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS				UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, HIGH or LOW A_{n} to $\overline{\text { LEAB }}$ or B_{n} to LEBA	Waveform 2	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 0.0 \\ & 3.0 \end{aligned}$	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW A_{n} to $\overline{\text { LEAB }}$ or B_{n} to $\overline{\text { LEBA }}$	Waveform 2	$\begin{aligned} & 0.0 \\ & 1.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.0 \\ & 2.0 \\ & \hline \end{aligned}$	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, HIGH or LOW A_{n} to EAB or B_{n} to EBA	Waveform 2	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW A_{n} to $\overline{E A B}$ or B_{n} to EBA	Waveform 2	$\begin{aligned} & 0.0 \\ & 1.5 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.0 \\ & 2.0 \\ & \hline \end{aligned}$	-	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Latch enable pulse width, LOW	Waveform 2	4.0	-	4.5	-	ns

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation delay for non-inverting outputs

Waveform 2. Data Setup Time and Hold Times, and Latch Enable Pulse Width

Waveform 3. 3-State Output Enable Time to HIGH Level and Output Disable Time from HIGH Level

Waveform 4. 3-State Output Enable Time to LOW Level and Output Disable Time from LOW Level

TEST CIRCUIT AND WAVEFORMS

SWITCH POSITION

TEST	SWITCH
tpLZ	closed
tpZL	closed
All other	open

Input Pulse Definition

DEFINITIONS:

$R_{L}=$ Load resistor; see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT137-1	075E05	MS-013			$\begin{gathered} -9-12-27 \\ 03-02-19 \end{gathered}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.6	7.9	1.25	1.03 0.05 1.65	0.25	0.09	8.0	5.2	0.65	7.6

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT340-1		MO-150				

DIMENSIONS (mm dimensions are derived from the original inch dimensions)

UNIT	$\underset{\max .}{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\mathrm{Z}^{(1)}$
mm	4.7	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.25 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$	$\begin{array}{r} 10.03 \\ 7.62 \end{array}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.246 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of $0.25 \mathrm{~mm}(0.01 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT222-1		MS-001		- ¢	$\begin{aligned} & -99-12-27 \\ & 03-03-12 \end{aligned}$

REVISION HISTORY

Rev	Date	Description
$_3$	20040722	Product data sheet (939775013803). Replaces Product specification 74F543_544_1 of 1994 Dec 05 (9397 750 05135). Modifications: \bullet Remove part-type 74F544 and all its references. \bullet Change Type number for SSOP24 package from "74F543DB" to "N74F543DB".
$_2$	19941205	Product specification (9397 750 05135). ECN 853-0874 14379 of 05 December 1994.

Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definitions
I	Objective data sheet	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data sheet	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data sheet	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 402724825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2004
All rights reserved. Printed in U.S.A.
Date of release: 07-04

